主页
软件技术
返回
流量一号机二号机三号机四号机总出力组态效率控制流量控制出力控制流量控制出力控制流量控制出力控制流量控制出力43004300430040.8653930393039300.964853485348530.92675731573157310.93886553655365530.93897236723672360.92110404740373745375577920.8911453545444217420787520.9112501250234662465296750.923135491549051055106105970.934146074594053905524114650.938156397639158985904122960.939166427645866566626130840.937176750679569966951137460.92618507251074858490045214443144520.92019539954285163514547984787153610.92620572457515473545150965071162740.93221606760785777575053515367171970.93822616463886478598454745565180270.93923629663356521646960206033188370.93824653465816786675262506237195700.93425675267977000694364596471202110.9262654195448559355905179516548154804210090.9252756595687584058345411539050165014219270.9302859015933609060875637558352425269228720.9362961296166634563265847581354345449237560.9383063256371655365266050599756295663245580.9383165196547675367686237618458055815253160.9353266936745693369206406634259655989259990.9313368516904710070846555652261036099266110.9243469977084725271376698671462376249271850.9163571637163742474246858685863876387278320.9113673027302756675736989691565096575283670.903

  1结果的证明和分析

  a证明:(四台机同时发电)

  1)、极小点定义:若有x*?Rn,并存在δ0,使得

  

  成立,则称x*是f的局部极小点。若当x=x*时,上式为严格不等式,则称x*为f的严格局部极小点。若对任何x*?Rn时,上述不等式都成立,则称x*为f的全局极小点。若对任何x=x*,上式为严格不等式,则称x*为f的严格全局极小点。

  2)、极小点的必要条件:

  若f在x*的某邻域D上连续可微,且x*是f的极小点,则f在点x*处的梯度为

  

  满足▽f(x*)=0的点x*,称为函数f(x)的驻点,它可能是极大点、极小点或鞍点。

  由N=ΣNi=N1+N2+N3+N4

  Q=ΣQi=Q1+Q2+Q3+Q4

  dQdN1=dQ1dN1+dQ2dN1+dQ3dN1+dQ4dN1

  =dQ1dN1+dQ2dN2·dN2dN1+

  dQ3dN3·dN3dN1+dQ4dN4·dN4dN1

  可得

  dQdN1=(dQ1dN1-dQ2dN2)+(dQ3dN3-dQ2dN2)dN3dN1+(dQ4dN4-dQ3dN3)dN4dN1

  要保证dQdN1=0,必须满足微增率相等,即dQ1dN1=dQ2dN2=dQ3dN3=dQ4dN4

  通过软件生成的数据在AutoCAD14环境下建立4条1~4号机的Q-N曲线,将其拟合,然后用离散牛顿法求各点的一阶偏导即微增率,其值如表二:

  [表二]微增率表

流量No.1微增率No.2微增率No.3微增率No.4微增率260.00110.00110.00110.0011270.00110.00110.00110.0011280.00110.00110.00110.0011290.00120.00120.00120.0012300.00130.00130.00130.0013310.00140.00140.00140.0014320.00160.00150.00160.0016330.00170.00170.00170.0017340.00160.00160.00160.0016350.00170.00170.00170.0017360.00190.00190.00190.0019

  造成两种不同的优化方式的结果有所不同的原因分析:

  a由于初始状态、检索步长和扩展节点不同,但它们都在最优解附近。

  b求效率时循环结束条件为效率绝对误差0.05%

  c计算机保留小数点后8位,引起的截断误差和舍入误差

  d计算时功率的小数位舍去

  2结论:

  a本系统用人工智能的方法求解水电厂内的智能调度问题,并用微增率相等满足极值点的必要条件证明了本方法的正确性。

  b通过控制流量(流量一定,功率最大化。)或控制功率(功率一定,流量最小化。)两种初始状态,用不同的多维优化方式得出相同的组态效率,可见其为该工况的最大值。

  c通过多次、反复地运行该软件,未出现因输入数据微小摄动而引起解的振荡或有较大扰动,可判定该软件算法是稳定的。

  d通过四台机优化解算的切换点趋势可看出,其三次曲线已趋平坦,对于装机台数大于四台的电站,只须根据电站实际情况,前置适当的算法,即可达到电站整体优化调度的效果。

  e本系统对综合特性曲线兼容性强,具有工程实现容易等特点。

  f优化效果取决于检索步长,而检索步长的大小直接影响着计算机的运行时间和存储空间。

  综上所述,该软件采用面向对象的程序构造,用人工智能的方法求解水轮机

  

  参考文献

  [1]齐学义,李沛.人工智能与水电站经济运行[J].动力工程

  [2]哈尔滨大电机研究所编.水轮机

  [3]常近时,寿梅华,于希哲.水轮机

  [4]施妙根,顾丽珍编著.科学和工程计算基础[M].北京:清华大学出版社,2002

  Theproofofwaterpowerstationeconomicmovementoptimizationsolution

  LIPeiQIXue-yi

  (LanZhouscienceandengineeringuniversityfluidmotiveandcontrolcollege,LanZhou,730050)

  Abstract:ThispaperanalysestheresultofthedigitalautomaticallygeneratecontrolsystemdescribedbyTheartificialintelligencewaterpowerstationeconomicmovement,withthecontinuityoftiny-increasing-rateandthedefiniensofsmallestproofsthesmallestcharacteristicoftheresult,andgetsthesamecombinationappearanceefficiencybytwokindsofoptimization

  Keyword:waterpowerstation;tiny-increasing-rate;economicmovement

  附图:全数字仿真自动发电控制界面

  

  

  作者简介:李沛(1966-)男,在职研究生,高级工程师


水电站经济运行最优解的证明

简介:本文对《人工智能与水电站经济运行》一文所述《全数字仿真自动发电控制系统》的优化效果进行了分析,用微增率连续性和极小值的定义证明了生成解的极小值特性,并用两种不同的优化取得了相同的组态效率。关键字:水电站微增率经济运行

  0测试用例

  在水电站实际运行的机组中,水力特征完全相同是不可能的。由于选型不同、机组运行时间长短不同、磨损情况不同、空化性能不同等,都造成机组性能的差异,故测试用例中的参数和机型如下:

  水头:89m

  出力:4´6300kW

  转速:600rmin

  一号机:HLJF2055-LJ-110

  二号机:HLJF2055-LJ-112

  三号机:HLJF2055-LJ-108

  四号机:HLJF2055-LJ-105

  用四种不同规格的机型来表征并联运行的机组,以期通过计算机软件实现机组出力变化和流量变化时的实时动态负荷优化分配及智能决定每台机的投运、切除。

  根据GBT15468-1995《水轮机

  [表一]组态效率与负荷分配表

信息发布:名易软件http://www.myidp.net